

Borland® Developer Studio 2006
Reviewer's Guide

The Complete Windows® Development Solution

A Borland White Paper
Produced for Borland by Cary Jensen, Jensen Data Systems, Inc.

 Borland Developer Studio 2006 Reviewer's Guide

Contents
Contents.. 2
Overview ... 4

One IDE, Multiple Personalities ... 4
One IDE, Multiple Languages.. 4

Delphi Language Enhancements .. 6
Updates for Both Win32 and .NET Delphi Compilers .. 6
The For...In Loop .. 6
Support for Unicode and UTF8 Formats... 7
The Delphi for .NET Compiler.. 7
Delphi Code and Namespaces .. 7
Support for Weak Packaging in VCL for .NET Applications 8
Forward Declared Record Types... 8
The Delphi Win32 Compiler ... 8
Function inlining .. 9
More Inlining of RTL Functions.. 9
Support for Nested Types .. 9
Nested Type Constants in Class Declarations ... 10
Support for Pentium 4 SSE3 and SSE2 Instruction Op Codes and Data Types . 10
XML Document Generation.. 11
Enhanced Support for Records.. 11
Class Variables ... 12

The Integrated Development Environment... 13
The Structure Pane... 13
The Tool Palette.. 14
Enhanced Tool Palette Behavior ... 14
The Object Inspector .. 16
The Upgrade Project Wizard.. 17
Delphi 2006 Wizards... 18
Find in Files Enhancements... 19
Updated Support for International Characters .. 20
Message List Enhancements... 20
IDE Error Reporting .. 21
The Improved VCL Form Designer.. 23
Dynamic Alignment Guides.. 24
Design Guidelines... 24
Form Positioner... 25
Visual Component Library Updates... 25
New VCL Components... 26
Intellimouse® Support for VCL .. 26
Other VCL Enhancements ... 27
Integrated modelling using Borland Together® technollgy.................................... 27
Design Patterns... 31
Document Generation .. 32

Editor Improvements .. 34
Live Templates.. 34
Invoking Live Templates... 35
Custom Live Templates.. 38
Surround Templates ... 40
Block Completion .. 41

 Borland Developer Studio 2006 Reviewer's Guide

The Enhanced Code Editor Gutter .. 42
Code Navigation Enhancement... 43
Toggling Code to/from Comments... 43
Persistent Bookmarks... 43
Improved Method Navigation ... 44
SyncEdit... 44
Refactoring .. 46
Symbol Renaming... 46
Variable and Field Declarations... 47
Resource Refactoring... 48
Extract Method Refactoring.. 48
Import Namespace (C#) and Find Unit (Delphi) ... 49
Change parameter refactoring... 50
Error Insight... 51
Help Insight.. 52
Improved Page Management... 53
The History Manager .. 54
The Content Pane... 55
The Info Pane.. 56
The Diff Pane .. 57
Updated Memory Manager... 58
Debugger Enhancements... 58
Remote Debugging... 59
Expandable Watches and Local Variables ... 59
Grouped Watches... 60
Symbol Table Management ... 61
Database ... 62
Support for dbExpress™ in the Data Explorer.. 62
Borland Database Drivers .. 63
Other Updates to dbExpress.. 64
Summary ... 65
About Borland Software Corporation... 65
About the Author ... 65
Acknowledgements... 66

 Borland Developer Studio 2006 Reviewer's Guide

Overview
Welcome to the Borland® Developer Studio 2006 Win32 Reviewer's Guide. This guide
is designed to familiarize you with the wealth of new and improved features that you
will find in Borland Developer Studio 2006, the next generation in the evolution of
Borland's venerable Delphi™ product line.

Borland Developer Studio 2006 is the complete solution for building applications for
the Windows and .NET platforms. No other product offers the range of tools that
Borland provides you in this one product. From collaborative requirements
management with CaliberRM™ to UML-based design with Borland® Together® to
team version control and collaboration with StarTeam®, to Model Driven
Architecture™ (MDA) with ECO™ (enterprise core objects), Borland Developer Studio
2006 provides you with the peerless support tools necessary to ensure the success of
your projects. Having these support tools married to the state-of-the-art suite of
development tools for Windows and .NET in Delphi 2006, C#Builder 2006, and
C++Builder® 2006 is a match made in heaven.

Borland Developer Studio 2006 is the result of a convergence of decades of Borland
technologies, combined with the thoughtfully integrated support tools that Borland has
acquired in recent years. Finally, everything that you need is seamlessly blended into
the most complete Windows IDE for Borland yet.

One IDE, Multiple Personalities
Whether you are coding in Delphi or C#, writing Win32 applications or .NET managed
code, building ASP.NET Web pages or traditional client applications, Delphi 2006's
IDE provides you with a consistent and powerful set of development tools designed to
increase your productivity. With Delphi 2006, the IDE keeps track of what kind of
application you are working with, providing you with the designers, views, and features
consistent with the task at hand. If you create a new Win32 client application, or open
an existing one, the VCL (visual component library) designer kicks in, again providing
you with unmatched support for designing your user interfaces. You can even create
project groups that include two or more different kinds of projects. When you do this,
the type of application that is currently active in the project group determines which
designers are available, and which options you see in the supporting views. For
instance, if your project group includes both an ASP.NET Web Service application and
a Win32 VCL Form application, Delphi 2006 notes which of these projects is currently
active, providing you with the designer and editor appropriate for each as you switch
between your projects.

One IDE, Multiple Languages
Delphi 2006 is more than just context-sensitive designers — it is a full
multiple-language development environment. The native languages and debuggers
that are included in Delphi 2006 are Delphi for Win32 development, Delphi for the
Microsoft .NET Framework, and C# for the Microsoft .NET Framework. While other
IDEs support multiple languages, Delphi 2006 is unique in that it supports both
multiple platforms and multiple languages transparently. For example, you can create
a project group that includes a C# ASP.NET Web application, a Delphi for .NET Web
Control class library, and a traditional Windows DLL (dynamic link library) written in
Delphi Win32. Not only will the appropriate compiler and debugger be used for each
project, based on its underlying language, but also the code editor features and Tool

 Borland Developer Studio 2006 Reviewer's Guide

Palette will expose the appropriate features as you navigate between the various
projects. Delphi 2006 can also support additional compilers, if you wish. For example,
so long as you have the VB for .NET compiler installed on your workstation, you can
create, open, edit, compile, and debug VB for .NET applications without ever leaving
the Delphi 2006 IDE.

This reviewer's guide is organized by the major areas of software development and
support in Borland Developer Studio. Each section begins with a general overview,
which is then followed by a description of the many related updates, enhancements,
and additions introduced in this product. You begin with a discussion of the updates
you will find in the Delphi Language. From there, you will learn about the
improvements to the designer, editor, debugger and database support.

Disclaimer
Not all features described here apply to all editions and all versions of Borland
Developer Studio 2006. Please review the Borland Developer Studio 2006 feature
matrix to learn which features you will find in each edition. Your link to this feature
matrix is located at http://www.Borland.com/Delphi.

http://www.Borland.com/Delphi

 Borland Developer Studio 2006 Reviewer's Guide

Delphi Language Enhancements
The Delphi language is mature, providing you with nearly everything that you need
and want in a sophisticated and modern programming language. Nonetheless,
Borland has managed to add a couple of additional enhancements. These are
described in the following sections.

Borland compilers are legendary for their speed and compatibility, and this legacy
continues with Delphi 2006. Actually, Delphi 2006 ships with three compilers. One of
these compilers, the C# compiler, is licensed from Microsoft. Consequently, C#
applications you build in Delphi 2006 generate the same intermediate language (IL)
code as those built with Visual Studio. The other two compilers are Delphi compilers,
one for compiling traditional 32-bit Windows executables and the other for generating
IL for the .NET Framework. Both of these compilers have received significant updates
in the Delphi 2006 release. This section begins with a discussion of features added to
both the Win32 and the .NET versions of the Delphi compilers. Later in this section,
you will learn about the new features that are specific to one or the other of these
compilers.

Updates for Both Win32 and .NET Delphi Compilers
Several new features have been added to both of Delphi 2006’s Delphi compilers. The
most significant of these include the new for...in loop and Unicode support.
These new compiler features are described in the following sections.

The For...In Loop
The Delphi language has been updated to include a new looping control structure
similar to the C# foreach keyword. In Delphi, this new loop is referred to as a
for...in loop. Unlike traditional for loops in Delphi, the for...in loop does not
require an ordinal control variable. Instead, the for...in loop systematically
retrieves a reference to the next object in a collection of like objects. For example, the
following code segment can be used to iterate through the DataRows of a DataTable's
Rows property (this property is of the type DataRowCollection):

var
 Row: DataRow;
begin
 //...
 for Row in MyDataTable.Rows do
 ListBox1.Items .Add (Row[0] .ToString);

For the .NET Delphi compiler, for...in can be used with any object that satisfies at least
one of the following conditions:
§ it implements the IEnumerable interface
§ has a public GetEnuermerator function
§ is an array, set, or string

For the Win32 compiler, for...in can be used with any class that has
§ a public GetEnumerator function, or
§ is an array, a set, or a string.

 Borland Developer Studio 2006 Reviewer's Guide

Classes that implement a GetEnumerator function include TList, TCollection, TStrings,
TMenuItem, TFields, to name a few.

Support for Unicode and UTF8 Formats
Both of Delphi’s compilers can now compile UTF8 and Unicode source files.
Previously, only ANSI source files were supported. For the Delphi for .NET compiler,
this feature supports CLS (common language specification) standard Unicode
identifiers in both metadata and in source code.

The Delphi for .NET Compiler
Borland's Delphi for .NET compiler made its first debut with the release of Delphi 8 for
the Microsoft .NET Framework. In addition to the updates listed in the preceding
section, this compiler has received a number of updates that apply specifically to .NET
applications. These include a revision to how namespaces are created and managed,
forward-declared record types, and support for weak packaging in VCL for .NET
applications. The updates to the Delphi for .NET compiler are described in the
following sections.

Delphi Code and Namespaces
The biggest change to the .NET compiler is in how it generates namespaces for the
symbols defined in your units. Under the previous version of the compiler, the unit
name was the namespace. For some developers, particularly those accustomed to
using classes defined in C#, the namespaces created by Delphi appeared awkward.
Specifically, these namespaces revealed the physical structure of the underlying code,
which is irrelevant from the perspective of the person using your classes, and can be
distracting.

The Delphi 2006 compiler takes a new approach to namespace generation, allowing
multiple units, and even multiple applications, to contribute to a common namespace,
if desired. At the same time, it is just as easy to make each unit contribute to a
separate namespace. Here is how it works. If your unit names do not use dot notation,
the unit name is the namespace. This is how it worked before.If a unit includes a
multipart name, using dot notation, the namespace is defined by dropping the last part
of the unit name. For example, if a unit has the name YourCompany.Data.Unit1, the
classes within that unit will reside in the YourCompany.Data namespace. Classes that
appear in the YourCompany.Data.Unit2 and YourCompany.Data.Unit3 units will be in
the YourCompany.Data namespace as well. Global variables, constants, functions,
and procedures declared in Delphi code represent something of a challenge, in
that .NET requires all declarations to be associated with a class. Therefore, the global
symbols of a Delphi unit named YourCompany.Data.Unit1 are implemented in .NET
metadata as members of a class named Unit 1 within the namespace
YourCompany.Data.Units.

How Delphi symbols appear in .NET metadata has no effect on your Delphi source
code. You only need to consider how your Delphi code will appear in the .NET
metadata for the portion of your code that you want developers using other .NET
languages to use. In general, you should avoid using global variables, global
constants, or global procedures and functions when writing Delphi code that you
intend to be used by other .NET languages.

 Borland Developer Studio 2006 Reviewer's Guide

Support for Weak Packaging in VCL for .NET Applications
A runtime package in the VCL for .NET is a managed .NET assembly, it contains
declarations that the application can load and use at runtime. Under normal
circumstances, if you compile a VCL for .NET application to use a runtime package,
you are required to deploy that package, just as you are required to ensure the
deployment of all assemblies (DLLs) that are referenced in your application.
Weak packaging of a unit addresses a problem that arises when a runtime package
contains one or more units that statically link to an external DLL, in particular, a DLL
that is not commonly available. Under normal conditions, this situation requires that
you deploy both the runtime package and the DLL.

Consider the Microsoft DLL PenWin.dll for pen device input, which is not distributed
with Microsoft operating systems. The PenWin unit in Delphi statically links to the DLL
PenWin.dll. If your unit uses PenWin, and includes calls to one or more functions in
the statically linked PenWin.dll, adding your unit to a runtime package without weak
packaging would require that the PenWin.dll be available from any application that
loaded that runtime package. By making this unit weakly packaged, only applications
that actually call PenWin.dll functions will require PenWin.dll.

Weak packing permits an application to link a non-packaged version of the unit into
the executable instead of using the runtime package that contains this unit. As a result,
applications that need the features of the weakly packaged unit will link the
non-packaged version of the unit (that stored in the compiler-generated DCPIL file),
and as a result, require the DLL. Applications that do not use the unit will not require
the DLL, even if they are compiled to use the package that contains the weakly
packaged unit. Weak packaging has been available for some time in the Delphi Win32
compiler. Weakly packaged unit semantics are now supported by the Delphi for .NET
compiler.

Forward Declared Record Types
Record types can now be forward declared in Delphi VCL for .NET and FCL
applications. A forward declared record instructs the compiler to recognize the record
as a valid type, even though its formal declaration appears later in the same type
block. Forward declared record types permit two type declarations, specifically records,
classes, and interfaces, appearing in the same type block to reference one another in
their member fields, properties, or methods. You create a forward declared record
type by declaring the record type symbol but omitting the record's field lists.

The Delphi Win32 Compiler
The degree of compatibility between the Delphi Win32 and .NET compilers is one of
the truly remarkable Delphi 2006 features. This compatibility permits single projects to
be compiled as true Win32 applications and then effortlessly migrated to 100% .NET
managed code applications. In many cases, a single set of source files can be
compiled by both the Win32 and the .NET versions of the Delphi compiler. No other
development environment lets you do this as easily. Equally compelling for developers
is Borland's continued support for the Win32 platform with the most modern IDE on
the market. While Borland is committed to the .NET platform as the future of Windows
development, Borland also knows that the majority of desktop developers maintain
applications on the Win32 platform, and Borland is just as committed to providing
those developers with the advanced features that they need. Although the bulk of the
enhancements to the Win32 compiler have already been described earlier in this

 Borland Developer Studio 2006 Reviewer's Guide

guide (in the section "Updates for Both Win32 and .NET Compilers"), the following
sections discuss some of the unique features added to the Delphi Win32 compiler in
Delphi 2006.

Function inlining
Function inlining is an operation performed by the Win32 compiler at compile time.
The feature was introduced in Borland Developer Studio 2005. When a function is
inlined, the compiler replaces a call to the subroutine (a method, function, or
procedure) with the compiled instructions defined within the subroutine. Function
inlining can increase application performance by eliminating the overhead associated
with function, procedure, and method calls. There are two ways to influence whether
the compiler will inline a function or not. One way is to include the inline directive in
the function, procedure, or method declaration. This directive is a request to the
compiler to consider whether or not to inline the function. If inlining has not been
disabled, and the compiler determines that the function can be safely inlined, the
inlining will be performed. The second way is to use the {$INLINE} compiler directive.
This directive can be passed with one of three parameters, ON, OFF, and AUTO. With
the ON parameter, the default, the compiler will inline functions declared using the
inline directive, whenever the compiler determines that inlining is safe. No inlining
takes place when you specify the OFF parameter.

When you use the {$INLINE} compiler directive with the AUTO parameter, the
compiler attempts to inline, if possible, any small function — one whose code size is
roughly 32 bytes or less. While function inlining can produce performance
improvements, Borland is quick to note that it should be applied judiciously, and does
not recommend using the AUTO parameter with the {$INLINE} compiler directive.

Inlining can produce larger executables, even some that are dramatically larger. Also,
inlined functions do not always produce performance benefits. In some cases, inlining
can actually reduce performance. There are a number of conditions that prevent a
subroutine from being inlined. For example, subroutines that include inlined assembly
instructions cannot be inlined. Similarly, methods of a class that access one or more
of that class's private members cannot be inlined into a method in another class.
Borland has applied the inline directive to some of the smaller routines in the VCL and
RTL, where deemed appropriate. As a result, code that uses these routines will
execute faster than before, but with slightly larger executables.

More Inlining of RTL Functions
Even more of Delphi's runtime library (RTL) has been inlined in Borland Developer
Studio 2006, including the Length function, which is one of the more frequently called
functions. When a function is inlined, the compiler generates the code to perform the
operation and inserts this code in place of each function invocation. Without inlining,
the compiler generates the function code only once, and all calls to that function
require a jump to the generated code. In some cases, such as in the Length function,
the amount code that must be generated to perform the jump is greater that the
amount of code in the function itself. With functions like Length, inlining produces
more efficient code.

Support for Nested Types
A nested type is a type declaration inside another type declaration. The Delphi
for .NET compiler already supports nested types. Delphi's Win32 compiler does now,

 Borland Developer Studio 2006 Reviewer's Guide

too. The following is an example of a class that contains a nested type. This example
is taken from the Delphi 2006 Help, and can be found under the heading Nested Type
Declarations.

type
 TOuterClass = class

 strict private
 myField: Integer;

 public

 type
 TInnerClass = class
 public
 myInnerField: Integer;
 procedure innerProc;
 end;

 procedure outerProc;
end;

Nested Type Constants in Class Declarations
Nested type constants are constant class member declarations inside of a class type
declaration. Nested type constants are somewhat similar to class functions, in that
they can be referenced using a class reference without an instance of the class.
Unlike class functions, however, nested type constants always return a constant
value.
Nested type constants are already available for your .NET projects. Now you can use
them in your Win32 applications as well. Nested type constants can be of any simple
type, such as ordinal, real, and String. You cannot declare a nested constant to be a
value type, such as TDateTime.

The following is an example of a class that includes a nested type constant
declaration:

type
 TTemperatureConverter = class (TObject)
 public
 const AbsoluteZero = -273;

 procedure ConvertFtoC(Temp: Integer): Integer;
 //...

Support for Pentium 4 SSE3 and SSE2 Instruction Op Codes
and Data Types
If you need to get close to the silicon, Delphi's Win32 compiler now permits you to
include Pentium 4 SSE3 and SSE2 op codes and data types in your inline assembly
routines.

 Borland Developer Studio 2006 Reviewer's Guide

XML Document Generation
XML document generation was introduced in the Delphi 8 for .NET and C#Builder
compilers. You can now generate XML documentation files for your Win32 source
code. To enable XML Doc generation, enable the Generate XML Documentation
check box on the Compiler page of the Project Options dialog box. You display the
Project Options dialog box by selecting Project | Options from the Delphi 2006 main
menu.

When Generate XML Documentation is enabled, the compiler produces one XML file
for each of your source files. This file has the same name as the source file, but with
the .xml extension. If you have included custom XML Documentation comments in
your source files, these will be inserted into the generated XML file.

The XML files generated when you compile with Generate XML documentation
enabled can be used with widely available documentation generating tools.
Alternatively, you can write your own XML parser to use this information any way you
see fit.

Enhanced Support for Records
Several enhancements have been introduced for record structures. The most
important of these is that records now support properties and methods. While a record
with properties and methods sounds more like an object, it is not. Specifically, records
are value types and are allocated on the stack. By comparison, objects are reference
types and are allocated on the heap. Additional differences are that records do not
support inheritance whereas objects do, records use copy on assignment semantics
while objects do not, and records include an automatic constructor while objects must
be explicitly instantiated.

One additional capability added to records is operator overloading. You create an
operator overload by introducing a class operator method into your record declaration
using one of the following names: Implicit, Explicit, Negative, Positive, Inc, Dec,

 Borland Developer Studio 2006 Reviewer's Guide

LogicalNot, BitwiseNot, Trunc, Round, Equal, NotEqual, GreaterThan,
GreaterThanOrEqual, LessThan, LessThanOrEqual, Add, Subtract, Multiply, Divide,
IntDivide, Modulus, ShiftLeft, ShiftRight, LogicalAnd, LogicalOr, LogicalXor,
BitwiseAnd, BitwiseOr, and BitwiseXor. Your implementation of the declared class
operator method defines how the overloaded operator behaves.

The following is an example of a record type named TBlock. The add (+) operator of
this record is overloaded:

Record declarations in Delphi for .NET applications support interfaces, but those in
Win32 Delphi do not.

Class Variables
Classes in Delphi for Win32 now support class variables. A class variable is stored in
a single memory location that is shared by all member of the class, as well as by
descendants of that class. Class variables join the static class constants that were
introduced into Delphi for Win32 in Delphi 2006.

 Borland Developer Studio 2006 Reviewer's Guide

The Integrated Development Environment
The Delphi IDE (integrated development environment) represents state-of-the-art in
software development tools enabling you to develop applications faster and better.
This section focuses on the features found in the various panels, designers, dialog
boxes, and views of the IDE. Features that are specific to the code editor are detailed
separately in a later section of this guide.

The Structure Pane
The Structure pane is a context-sensitive view that provides you with detailed
information about what ever is displayed in your main view. When you are using the
code editor, the Structure pane displays the classes, types, interfaces, and other
symbols in the current file, as shown in the following figure. (In Delphi 7, this view was
called the Code Explorer.)

By comparison, when you are designing a VCL Form, the Structure pane displays the
components that appear on your form, with the various nodes representing the
containership of your controls.
(In Delphi 7, this view was referred to as the Object Tree View.)

 Borland Developer Studio 2006 Reviewer's Guide

Not only does the Structure pane provide you with valuable insight into your projects,
it also serves as a convenient tool for navigating the symbols and objects that you are
using. When you are editing your code, double-clicking a symbol in the Structure pane
takes you to the associated line of code in the editor. When you are designing a VCL
Form, clicking an object selects it in the designer, permitting you to quickly change its
properties or assign event handlers.

The Structure pane is also invaluable when there are errors in your code. When
Delphi 2006's new Error Insight feature identifies problems in your source files, these
appear automatically, as you type, in the Structure pane, permitting you to quickly
navigate to the position in the code editor where problems exist. Error Insight is
described in more detail in the "The Next Generation Code Editor" section of this
guide.

The Tool Palette
When you work in a component-based environment like Delphi 2006, you typically
make extensive use of design-time components, which are placed into the designer
and configured using the Object Inspector. These components are available from the
Delphi 2006 Tool Palette. The Tool Palette is organized by component category.
Which categories are displayed, and which components appear within them, is context
sensitive, based on the type of project on which you are working. Furthermore, the
Tool Palette permits you to controls its organization. You can change the position of a
component within a Tool Palette category, as well as move a component to a different
category, simply by dragging the component within the Tool Palette. You can even
define your own custom categories into which you can drag your components.

Enhanced Tool Palette Behavior
Delphi 2006's Tool Palette is better than ever. In addition to providing access to
design-time components and code snippets, depending on whether you are working
with a designer or code editor, the updated Tool Palette can also be used to create
new projects, files, and objects. When you do not currently have a project open, the
Tool Palette provides access to all of the wizards and templates of the Object
Repository. Some of these are shown in the following figure.

 Borland Developer Studio 2006 Reviewer's Guide

When you are using the code editor, the Tool Palette now includes these same
options in addition to code snippets, and reusable pieces of code that you can drag
into the code editor. Selecting objects from the Tool Palette has also been enhanced,
greatly improving the speed with which you can build forms and applications. Simply
click the Filter Current Items button in the Tool Palette toolbar, or press Ctrl-Alt-P, and
start typing the name of the object you want to select. As you type, the characters
you've entered so far appear in the Tool Palette title

You also have additional options for controlling the Tool Palette display. To see these
options, select Tools I Options from the main menu. Tool Palette configuration options
are available under the Tool Palette node of the Options dialog box.

 Borland Developer Studio 2006 Reviewer's Guide

Finally, the Tool Palette in Delphi 2006 now supports true drag-and-drop placement of
components into the designer you are working with. Previously, component placement
with VCL Forms could be better described as click-and-click, though that technique
also works in Delphi 2006.

The Object Inspector
The Delphi 2006 Object Inspector, which you use to configure objects placed on your
form at design time, has also been updated. Not only does the Object Inspector permit
you to configure properties and events for the objects that you have placed into the
designer, but you can also use it to control file names and get information about
objects that you select in the Project Manager. For example, select a file in the Project
Manager, such as an .aspx file in an ASP.NET Web application, and the file path and
file name will appear in the Object Inspector, as shown in the following figure.

 Borland Developer Studio 2006 Reviewer's Guide

The File Name property in the preceding figure is shown in an enabled font, indicating
that you can edit the name of this file using the Object Inspector. Changing the file
name here not only changes the name of the file displayed within the Project Manager,
but since this file is a Delphi unit, the unit name changes as well. Of course, you can
still rename a file the old fashioned way, by selecting File | Save As from the main
menu. Other objects selectable within the Project Manager can also be viewed in the
Object Inspector. For example, if you select one of the assemblies listed under the
References node of a .NET project in the Project Manager, the Object Inspector
displays details about that assembly, as shown in this next figure.

The Upgrade Project Wizard
Because Delphi 2006 includes both Win32 and .NET compilers for the Delphi
language, it can be used to create new Win32 applications as well as further the
development of your existing Win32 projects that you created in Delphi 7 and earlier.
You can also use Delphi 2006 to migrate your existing Win32 applications to VCL
for .NET, the 100% .NET managed-code solution that maintains component and
source code compatibility between Win32 and .NET development. The Upgrade
Project Wizard is a special utility that runs the first time you open a Win32 application
in Delphi 2006. Using this utility, you can choose to continue the current project as a
Win32 application, or you can convert it to a .NET application.

 Borland Developer Studio 2006 Reviewer's Guide

Once you made your choice using this wizard, Delphi 2006 will remember your
selection. If you tell the Project Upgrade Wizard that you want to continue working
with a Delphi project as a Win32 project, and at some later time decide to migrate it to
VCL for .NET, simply delete your project's *.bdsproj file. After that, open the .dpr file in
Delphi 2006. Once again, the Project Update Wizard will ask you to choose whether to
continue working with the project as a Win32 project or to migrate it to VCL for .NET.

Delphi 2006 Wizards
Wizards are small applets that help you to quickly create the projects, objects, and
files that you use in Delphi 2006. For example, the ASP.NET Web Application Wizard
creates for you the necessary web.config, global.asax, and initial .aspx file, and
configures an IIS virtual directory into which these are placed, among other tasks. In
short, wizards increase your productivity, getting you off to a fast start in the right
direction. The following figure shows the Delphi 2006 object repository, displaying just
a few of the many available wizards.

 Borland Developer Studio 2006 Reviewer's Guide

Delphi has always provided you with a rich collection of wizards that support almost
every aspect of Windows development. For Win32 development, these include the
Windows 2000 Logo Wizard, the DLL Wizard, the Automation Object Wizard, the Web
Service Wizard, the IntraWeb Application Wizard, the Database Form Wizard, and the
Thread Wizard. These are just some of the dozens of powerful wizards that are
available. For Delphi for .NET and C#, you will find the ASP.NET Web Application
Wizard, the Windows Form Application Wizard, ASP.NET Web Service Application
Wizard, the Web Control Library Wizard, and many, many more. Delphi 2006 includes
Wizards that were previously available in Delphi 7, Delphi 8 for the Microsoft .NET
Framework, and C# for the Microsoft .NET Framework. In addition, Delphi 2006
includes a number of new and improved wizards ⎯ accelerating your development
efforts even more. These include the updated New Component Wizard, the new DB
Web Control Library Wizard, the ECO ASP.NET Application Wizard, the ECO Web
Service Application Wizard, and the Satellite Assembly Wizard, just to name a few.

Find in Files Enhancements
Delphi 2006 makes it even easier for you to search your project files by allowing you
to group search results by file. Simply check the Group results by file check box in the
Find Text dialog box.

 Borland Developer Studio 2006 Reviewer's Guide

The following figure shows what a grouped search result looks like. As you can see,
each file in which the search string appears forms a base node in a tree view.
Expanding the node for a given file lists the lines on which the located search string
was found. You can then double-click a particular entry to go to that line of code in the
code editor.

Updated Support for International Characters
The Delphi 2006 IDE has been upgraded across the board to support UTF-8
characters in all of its wizards, windows, dialog boxes, and panes.

Message List Enhancements
Delphi 2006 uses the Message List pane to list compiler errors, warnings, and hints.
You can now save the contents of the Message List pane by right clicking in the
Message List pane and selecting either Copy, to copy selected messages to the
Windows clipboard, or Save, to save the Message List contents to a file.

 Borland Developer Studio 2006 Reviewer's Guide

IDE Error Reporting
Borland's commitment to creating better software has lead to the development of a
number of programs for reporting and fixing problems. One of the most recent of these
is Quality Central, a Web-based application for submitting bug reports located at
http://qc.borland.com. With Delphi 2006, Borland has embedded an error reporting
system directly into the IDE. This feature is called IDE Error Reporting. If an exception
is raised within the IDE, Delphi 2006 displays the Error dialog box. If you click the
Details button, you see a detailed trace of the error.

Clicking the Send button displays the Send Report dialog box.

http://qc.borland.com

 Borland Developer Studio 2006 Reviewer's Guide

Click the Next button to see the stack trace that will be submitted to Borland along
with your error report. Click Next again to enter a description of what you were doing
when the error occurred.

Click Next once more to optionally provide your Borland Developer Network (BDN)
logon email address and password. Submitting your report using your BDN account
allows you to easily follow up on your report using Borland's Quality Central. If you
want to submit the report anonymously, check the Anonymous Report check box.
Click Next one final time to submit the error report.

 Borland Developer Studio 2006 Reviewer's Guide

The Improved VCL Form Designer
As a developer, you will greatly appreciate the enhancements found in Borland
Developer Studio's integrated development environment. Indeed, more productivity
improvements have been introduced in Borland Developer Studio 2006's IDE than in
any previously updated Borland IDE. Regardless of which earlier version of Delphi,
C#Builder, or C++Builder that you are currently using, the IDE updates you find in
Borland Developer Studio 2006 alone justify the upgrade. If you are not currently
using a Borland IDE, you will find that the collective features of Borland Developer
Studio's development environment are enough to make you consider switching.

For Delphi development of VCL and VCL for .NET applications, Delphi 2006 provides
you with a choice between using the .NET-style embedded designer or the classic
floating designer. To enable the floating designer in Delphi 2006, select Tools |
Options. Navigate to the VCL Designer node under Delphi Options, and uncheck the
Embedded designer check box.

Component-based development involves a significant amount of time configuring
components at design time, and when it comes to graphical user interfaces, this
requires a first-class form designer. For VCL (visual component library) development,
Borland Developer Studio 2006 provides you with rich new features for building your
using interfaces. These include dynamic alignment guides, design guidelines, and the
Form Positioner. Each of these features is described in the following sections.

 Borland Developer Studio 2006 Reviewer's Guide

Dynamic Alignment Guides

Dynamic alignment guides are visual cues displayed in the form editor as you position
your visual controls. For most controls, these guides permit you to effortlessly align
your controls with respect to their top, left, bottom, and right borders. Specifically, as
you drag a control on a form, visual cues appear each time one of the control's edges
comes into perfect alignment with an edge of another control on your form. Consider
the following two figures. In the figure on the left, a TEdit (Edit2) is being dragged. The
figure on the right shows how the alignment guide appears once the dragged TEdit
comes into left alignment with the TEdit above it. The alignment guide disappears as
soon as the dragged control is no longer aligned with another control. For those
controls that contain textual elements, alignment guides permit you to align those
controls with respect to their text. For example, the alignment guide in the following
figure appears when the text elements of the TEdit and TButton come into alignment.

As a component developer, you can specify which elements of your visual controls
participate in alignment guides. In addition, you can create new alignment points in
your custom components, permitting those developers using your components to
effortlessly align your components with respect to specific features they contain.

Design Guidelines
Like alignment guides, design guidelines are visual cues displayed in the VCL
designer that permit you to better position your controls. However, instead of cueing
vertical and horizontal location, design guidelines provide you with hints about the
spacing of your controls. Design guidelines are associated with the Margins and
Padding properties of visual controls and their containers. Using the Margins property,
you can define the ideal minimum spacing between your control and other visual
controls. Whenever the placement of your control matches the spacing suggested by
the guidelines, a line appears. This line is visible in the following figure, in which both
an alignment guide and a design guideline are shown. The design guideline is the
short grey line that connects the middle-top of the TButton to the bottom of the TEdit.
This line indicates that the current spacing of these two controls satisfies the design
guidelines defined by the bottom margin of the TEdit and the top margin of the
TButton.

 Borland Developer Studio 2006 Reviewer's Guide

While the Margins property of a control specifies its ideal distance from a margin of
another control, the Padding property defines the ideal spacing of controls that appear
inside a container from their container's borders. Consequently, only container
controls have a Padding property. A design guideline appears when a control's Margin
and its container's Padding combine to suggest an ideal distance for the control from
its container's corresponding border. For those components that support an Align
property, Borland has introduced a new property called AlignWithMargins. When this
property is set to True, the value of Align respects the Margin properties defined for
the aligned objects, as well as the Padding properties of the container in which they
are aligned. For example, if the Top Padding property of a TPanel is set to 2, and a
TMemo with a Top Margin property of 5 and Align property of alTop appears within
that panel, setting the TMemo's AlignWithMargin property to True will cause the top of
the TMemo to remain exactly 7 (2 + 5) pixels from the top of the TPanel. While most
developers will use alignment guides and design guidelines for design time placement
of controls, there is another, powerful purpose for these properties. When used with
the new TFlowPanel and TGridPanel containers, Margin and Padding properties are
used at runtime to manage the dynamic placement of the controls contained within
them. TFlowPanel and TGridPanel are described in detail in the section Visual Control
Library Updates, found later in this reviewer's guide.

Form Positioner
There is a new visual cue on the VCL form designer that permits you to specify where
on the screen a form will be displayed (so long as the form's Position property allows
for default positioning). This cue is called the Form Positioner, and it appears in the
lower-right corner of the VCL form designer. How you use of the Form Positioner is
represented in the following two figures. The figure on the left shows the Form
Positioner, which in this case indicates that the form, if displayed in the default
position, will appear in the upper-left corner of the screen when made visible. If you
want your form to appear somewhere else on the screen when displayed, drag the
form position indicator within the Form Positioner to the desired location, as depicted
in the figure on the right.

Visual Component Library Updates
The Visual Component Library (VCL) is the principle library for development in Win32
Delphi and C++Builder applications. It is also the compatibility library for Delphi
for .NET applications. As in every other release of Delphi, Borland Developer Studio
2006 now includes several new and valuable components, as well as some
enhancements that affect a large number of existing components. These are

 Borland Developer Studio 2006 Reviewer's Guide

described in the following sections.

New VCL Components
For Delphi VCL-based development, the Tool Palette now includes a number of new
controls for creating better using interfaces. These include a TButtonGroup,
TCategoryButtons, and TDockTabSet. These components, which you can use in your
Win32 and VCL for .NET applications, permit you to easily create interfaces similar to
those used in Delphi 2006’s Tool Palette and the Structure pane. As you have
probably already guessed, these new components are the same ones that Borland
engineers developed to build the Delphi 2006 IDE.

Other new components in the VCL are TGridPanel and TFlowPanel, specialized
containers that enable dynamic runtime layout of the controls they contain. The
TGridPanel component provides component layout similar to that available in an
HTML table or in a Java GridBagLayout layout manager. Specifically, you configure a
TGridPanel to have a specific number of rows and columns. When the size of the
TGridPanel changes, the position, and potentially the size, of controls contained within
its cells are adjusted. Importantly, the new positions (and sizes, if applicable) respect
the Padding properties of the TGridPanel, as well as the Margin properties of the
controls displayed in the cells.

The TFlowPanel is a specialized panel that positions the contained controls similar to
how a word processor wraps the text in a document. (It is also similar to the Java
FlowLayout and VerticalFlowLayout layout managers.) By default, this flow is
right-to-left and top-to-bottom, though the TFlowPanel can be configured to use every
other combination of flow.

Also new on the ToolPalette is the TTrayIcon component. This component permits
you to easily create applications that appear as icons in the system tray of the task bar.
Among the properties of the TTrayIcon component are those that permit you to select
the glyph to display, a popup menu to associate with the icon, whether that icon is
animated or not, balloon hints, and event handlers that respond to a user's interaction
with the icon, to name a few.

In addition, VCL for .NET has been expanded to include even more Delphi
VCL-compatible classes. These additional classes make it even easier than before to
migrate your existing Win32 projects to the .NET framework. For a complete list of the
new components in Delphi 2006, see "What's New in Delphi 2006" in the Delphi 2006
help.

Intellimouse® Support for VCL
The VCL now supports Intellimouse scrolling in any container class that supports
mouse scrolling. In order to enable Intellimouse scrolling, simply add the IMouse unit
to your project source uses clause, or any other uses clause for that matter. (Although
for ease of maintenance, you are encouraged to use the project uses clause or the
interface section uses clause of your main form.)
IMouse only needs to appear once in your project to affect all scrollable containers.
When you enable Intellimouse support, scrollable VCL containers can be scrolled
using the mouse-wheel, or equivalent interface, on your pointing device, given that
your pointing device supports Intellimouse scrolling. If you want to enable Intellimouse
scrolling in your custom components, ensure that the csPannable flag appears in your

 Borland Developer Studio 2006 Reviewer's Guide

control's ControlStyle set property.

Other VCL Enhancements
In addition to the preceding updates to the visual control library, Borland Developer
Studio 2006 includes a new class, named TCustomTransparentControl, which you
can descend from if you want to create transparent visual controls. In addition, some
of the existing classes in the VCL have been enhanced. For example, Borland
Developer Studio 2006 introduces accessibility enhancements to the TActionBar
component, as well as color gradients to the TControlBar and TToolbar components.
For a complete list of updated and enhanced components, "What's New in Borland
Developer Studio 2006" from the Welcome page in the IDE.

Integrated modelling using Borland Together® technollgy
Borland Together is the visual tool that you use to create UML models for your
applications. When used with ECO III, these models can be used to generate the
objects that you can use directly in your applications. In response to customer
feedback, Borland has re-engineered the Together engine to provide better
performance and more efficient use of memory. This updated Together engine is
seamlessly integrated into Borland Developer Studio 2006. You begin a design project
in Borland Developer Studio 2006 by selecting the appropriate wizard from the Design
Projects page of the Object Repository. As you can see in the following figure, both
UML 1.5 and UML 2.0 projects are supported. This figure also shows the Convert from
MDL wizard, which you use to import models from Rational® Rose.

In addition to supporting UML design patterns, you can use Together to create many

 Borland Developer Studio 2006 Reviewer's Guide

other industry standard diagrams, including use case diagrams, class diagrams, and
sequence diagrams. The following figure shows the Add New Diagram dialog box,
which shows the various new diagram wizards available in Together.

Audits and Metrics
More than simply a modeling tool, you can use Together to analyze your existing
projects, generating metrics and audits that you can use to uncover potential problems
with your applications. For example, the following figure shows a Together-generated
Kiviat chart. A Kiviat chart depicts a best practices circle. Points that are within the
inner circle are considered acceptable, and those outside denote areas that may
deserve attention. For example, in the graph shown here, the depth of inheritance
hierarchy (DOIH) appears outside the user-defined inner circle. This metric indicates
that one or more of your classes are abnormally deep, with respect to the root class
(Object or TObject).

 Borland Developer Studio 2006 Reviewer's Guide

The inner-circle is user-defined because you set the limits for the metrics used by
Together. The following figure shows the QA Metric dialog box where these metrics
are configured.

 Borland Developer Studio 2006 Reviewer's Guide

The use and configuration of audits is similar to metrics. The following figure shows
the QA Audits dialog box, which contains the audits equivalent to the QA Metrics
dialog box.

 Borland Developer Studio 2006 Reviewer's Guide

Design Patterns
As mentioned earlier, Borland Together now provides you with high-level support for
design patterns. Borland Developer Studio 2006 ships with a large number of
industry-standard patterns, including those defined in the now classic book “Design
Patterns: Elements of Reusable Object-Oriented Software “(1995, Addison-Wesley
Professional Computing Series) by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides (affectionately know as the Gang of Four, or GoF). In addition to the
bundled patterns, you can also create and save custom design patterns. Both the
bundled patterns and your custom patterns can be accessed using the Pattern
Organizer, which is shown in the following figure.

 Borland Developer Studio 2006 Reviewer's Guide

Document Generation
One of the major benefits to you from the Together integration is the automatic
generation of documentation. This documentation is generated as HTML, permitting
you to view it in a browser, as well as permitting you to post it to your team's internal
project Web site. To generate HTML documentation using Together, right-click the
Model View pane from a Together-enabled project and select Generate
Documentation. Use the Generate Documentation dialog box, shown in the following
figure, to select the information that you want to include in the generated
documentation.

 Borland Developer Studio 2006 Reviewer's Guide

The following figure shows a sample of Together-generated documentation being
displayed in a browser.

 Borland Developer Studio 2006 Reviewer's Guide

Editor Improvements
As a typical developer, there is only one feature of the IDE that you are likely to use
more than the form designer, and that feature is the code editor. Fortunately, this is
the area where you will enjoy the greatest number of updates and improvements in
Borland Developer Studio 2006. The newly added features include live templates,
block surround, and block completion. The enhancements included a greatly improved
editor gutter, powerful new refactorings, enhanced method navigation, and updated
open unit management features. Each of these new and improved editor features is
described in the following sections.

Delphi 2006 continues Borland's heritage of providing developers with a world-class
programming environment. To most developers, that also means a world-class code
editor. And that’s exactly what you get in Delphi 2006. In fact, for most developers, the
updates that Borland has introduced to the code editor in Delphi 2006 will provide
ample justification to upgrade from a previous version of Delphi or C#Builder. These
features include refactoring support, SyncEdit, Error Insight, Help Insight, the History
Manager, and much, much more. These new features are described in the following
sections.

Live Templates
While code templates have been in Delphi since Delphi 4, they seem simple
compared to the live templates available in Borland Developer Studio 2006. Live
templates offer self-describing, intelligent code insertion, and interactive navigation to
the variable parts of the template. For example, consider the inserted template shown
in the following figure. This template was created by executing the forb template,
which inserts a for loop with a begin. . end block.

Notice that initially the I (the loop iteration variable) is highlighted. This permits you to
immediately edit the variable name, if you like. For example, many Delphi developers
use a lowercase variable named i as their loop iterator (even though Delphi itself is
case insensitive). You will also notice that the I, as well as the 0 and List.Count appear
as bordered text. These bordered text areas represent the variable parts of the live
template. After changing I to i, press Tab or Shift-Tab to navigate between the variable
parts of the template. As you navigate, you will notice that the hints change to
describe the role of the currently selected variable part. The following figure shows the
same live template shown in the preceding figure after you have navigated to the third
variable part.

 Borland Developer Studio 2006 Reviewer's Guide

Many live templates, such as the forb template, also support intelligent code insertion,
or scripting. With scripting, code executes when you complete the template,
conditionally performing one or more tasks for you. In the case of the forb template, if
the function in which you insert this template does not already contain a declaration
for the loop iterator variable, one will be inserted for you. The following code segment
depicts how a previously empty method might look after the execution of the forb live
template script.

Invoking Live Templates
Borland Developer Studio 2006 provides you with a large number of standard live
templates for each of its language personalities. These templates can be invoked
either on demand or automatically. To invoke a live template on demand, position your
cursor within the editor where you want to place the live template and press Ctrl-J.
Borland Developer Studio responds by displaying the Insert Template menu, shown in
the following figure. Select the template you want to insert from this menu and press
Enter.

Similarly, you can begin typing the first few characters of the template shortcut name
before pressing Ctrl-J. If only one template's shortcut name matches the characters
you've typed, that template is selected and inserted, without the Insert Template menu
being displayed. If two or more template shortcut names match what you've typed, the
Insert Template menu appears, though only the matching template names are shown,
in which case you then select which of the displayed templates you want and press
Enter. Your live templates are invoked automatically when the Code Templates
Completion checkbox is checked, as shown in the following figure. With automatic live
template invocation, live templates are inserted when you type the name of a template
shortcut and press Tab. For example, if you type forb and press Tab with code
templates completion enabled, the forb live template is instantly inserted into your

 Borland Developer Studio 2006 Reviewer's Guide

code at the position of your cursor.

You can also invoke live templates from the Templates pane, shown in the following
figure. To display the Templates pane, select View | Templates from the Borland
Developer Studio main menu.

 Borland Developer Studio 2006 Reviewer's Guide

Each of the standard templates that ship with Borland Developer Studio are defined
by an XML file, which you can edit if you want to change the template's content or
behavior. To edit one of the standard templates, select the template in the Template
pane and then click Edit from the Template pane's toolbar. The following figure shows
the trye (try ... except) live template in the code editor.

 Borland Developer Studio 2006 Reviewer's Guide

The trye live template is a good example to learn from, since it includes hint, text, and
script elements. Furthermore, this is a surround template, which means that a code
segment that you select before executing this template will result in the selected block
of code being enclosed in the try block.

Custom Live Templates
While the standard live templates that ship with Borland Developer Studio 2006 are
extremely useful, you will be delighted to discover that you can create your own,
custom live templates. To create a custom live template, click New from the
Templates pane's toolbar. Alternatively, you can select the Template Wizard from the
Object Repository. To do this, select File | New | Other from the Borland Developer
Studio main menu. Then, select the Template Wizard from the Other Files node of the
Object Repository and select Ok.

 Borland Developer Studio 2006 Reviewer's Guide

The new template appears as an XML document in the code editor, as shown in the
following figure. As you inspect this figure, you will notice that the new template is
displaying hints. This is because the new custom live template is created by a live
template. Not only does this reveal the incredible power of live templates, but the hints
that are provide greatly simplify the process of creating your own new, live template.

To complete your custom live template, fill in the various variable parts of the template,
and add your own elements, as needed, to define the features you want in your
template. In addition to the hints that the Live Template set up provides you with, you
can read the Borland Developer Studio 2006 help for information on creating custom
live templates. You should also examine the standard live templates that ship with
Borland Developer Studio 2006 for insight and tips into writing your own, first-rate
custom live templates.

 Borland Developer Studio 2006 Reviewer's Guide

Surround Templates
Surround templates are a special subset of live templates that permit you to quickly
enclose, or surround, a selected block of code. Examples of surround templates
include forb, try, procedure, and comment live templates.
For example, imagine that you want to enclose the following code selection in a try . ..
except block in a Delphi project.

With the desired code selected, select the tryf live template from the Templates pane,
and then click Execute. As shown in the following figure, the selected code will be
enclosed in the try block, and a finally block will be inserted after it.

Notice also that the code block that you selected has been indented as well, making
the resulting code more readable. You are now ready to insert a call to the Free
method of the TStringList in the finally block, ensuring its destruction once you are
through with it. You can also invoke a surround template from the Surround menu.
Begin by selecting the block of code in the code editor that you want to surround. Next,
right-click the selected block and select Surround. Borland Developer Studio responds
by displaying a submenu of the surround live templates for your current code
personality. For example, the following figure displays the Surround submenu for a
selected block of C# code.

 Borland Developer Studio 2006 Reviewer's Guide

Select the desired surround template and press Enter to enclose the selected code.
If you create your own custom surround templates, those will automatically appear in
the Surround submenu. Specifically, the Surround submenu includes any custom live
templates that you've created for the current language personality where the surround
attribute is set to true in the <template> element.

Block Completion
Block completion is the latest addition to Borland's CodeInsightTM feature. With block
completion, Borland Developer Studio 2006 will automatically complete a code block
that you initiate. For example, if you type begin using the Delphi personality, and then
press the Enter key, Borland Developer Studio 2006 will complete the block by adding
the end keyword. Similarly, type try and press Enter, and the finally and end keywords
are inserted. As mentioned, this feature is sensitive to the language of your current
IDE personality. For example, when writing code in C#, entering the open curly brace
({) and pressing Enter causes the close curly brace to be inserted. Like other aspects
of CodeInsight, you configure block completion using the CodeInsight page of the
Options dialog box shown in the following figure.

 Borland Developer Studio 2006 Reviewer's Guide

Notice that you can selectively turn off or on each of the CodeInsight features, as well
as configure the default delay before automatic features execute.

The Enhanced Code Editor Gutter
The code editor gutter, that area to the left of the code editor where break points, line
numbers, and bookmarks appear, has received a significant facelift in Borland
Developer Studio 2006. In short, the code editor gutter is now less cluttered, while
providing significant improvements in information content. Many of these
improvements can be seen in the following figure.

One of the first things that you will notice is that line numbers are not displayed on
every line. Instead, line numbers are displayed every 10 lines, by default. In addition,

 Borland Developer Studio 2006 Reviewer's Guide

a line number always appears on the current line, which is line 238 in the preceding
figure. This feature is configurable, in case you really do want to see line number on
every line of code. In addition, bookmarks and breakpoints now occupy less space
than in previous editors, once again resulting in a less cluttered look. This can be seen
in the preceding figure, where a line number and a breakpoint both appear on line
number 239. But the feature that you are likely to find most exciting is the change bar,
which is a visual cue that appears on the right side of the left gutter. By default, lines
that have been changed since you opened the current source file are marked with
visual indicators. Those lines that have been modified, but not yet saved, are marked
in yellow (by default). Lines that have been changed, and already saved, are marked
in green.

As is the case with all color coding available in Borland Developer Studio 2006, you
can customize the actual colors used to identify these changes.

Code Navigation Enhancement
Code navigation is a feature of Delphi 2006 that permits you to easily move between
sections of your code. For example, by pressing Ctrl-Shift-UpArrow (or
Control-Shift-DownArrow), you can move effortlessly between a method name in a
Delphi class declaration to the associated implementation of that method.
Delphi 2006 introduces a small but valuable enhancement to code navigation in
Delphi code, allowing you to move between your interface and implementation section
uses clauses, as well as between your unit's initialization and finalization sections,
using Ctrl-Shift-UpArrow. Code navigation is not necessary in C# projects, as the
associated modules in C# do not have a two-part structure, as is the case with Delphi
units.

Toggling Code to/from Comments
Delphi 2006 introduces a new feature that permits you to quickly comment and
uncomment a selected code block. To comment one or more consecutive lines of
code, select the code in the code editor, right-click, and then select Toggle Comment
from the displayed context menu (or press Ctrl-/). When you do this, Delphi 2006
places the single line comment characters (//) at the start of each of the lines in the
selected block. To uncomment one or more consecutive lines, select those lines and
press Ctrl-/, or right-click and select Toggle Comment. Delphi 2006 will respond by
removing the single-line comment characters from each selected line in the block. The
single-line comment characters do not have to be in the first column of the code editor
for Delphi 2006 to remove them.

Persistent Bookmarks
Bookmarks are special tags that you place within a source file to enhance your
navigation within that file. You place a bookmark by pressing Ctrl-Shift, followed by a
single digit, from 0 to 9. Once placed, the bookmark appears in the left gutter of the
code editor using a glyph that represents the digit. Once a bookmark has been placed,
you can quickly navigate to that bookmark within the code editor by pressing the Ctrl
key followed by the digit used to place the bookmark. For example, if you have
previously placed a bookmark using Ctrl-Shift-1, and subsequently navigate to a
different area of your code file, you can instantly return to the bookmarked line in your
source code by pressing Ctrl-1. Delphi 2006 now supports persistent bookmarks. If
persistent bookmarks are enabled, a placed bookmark will remain in the source code
until you specifically remove it. This means that you can place a bookmark in one

 Borland Developer Studio 2006 Reviewer's Guide

editing session, and that bookmark will still be there the next time you open that
source code file in Delphi 2006. In order to enable persistent bookmarks, check the
Project desktop check box under the Autosave options group on the Environment
Options page of the Options dialog box. You display the Options dialog box by
selecting Tools | Options from the main menu.

Improved Method Navigation
Delphi 6 introduced module navigation, which permits you to quickly move between
the methods in your class type declarations and their corresponding implementations
by pressing Ctrl-Shift-Up arrow and Ctrl-Shift-Down arrow. In Borland Developer
Studio 2006, method navigation has received another significant update with the
introduction of method hopping. Method hopping permits you to quickly move between
the methods of a unit by pressing CtrlAlt-Down arrow (to navigate to the next method
in the implementation section) and Ctrl-AltUp arrow (to move to the previous method).
Similarly, pressing Ctrl-Alt-Home moves to you the first method implementation in the
source file, and Ctrl-Alt-End moves you to the last. In its normal mode, method
hopping moves between method implementations without respect to class. For
example, pressing Ctrl-Alt-Down arrow will move you to the next method (if one exists),
even if it is a method for a class different than the one your cursor is currently pointing
to. You can control this behavior by using class lock, which you invoke by pressing
Ctrl-Q"L (Ctrl-Q, followed by L). When enabled, method hopping with class lock limits
your navigation to the methods of the current class. For example, with method locking
enabled, pressing Ctrl-Alt-Home moves your cursor to the first method of the current
class in your source file, while Ctrl-Alt-Down arrow moves you to the next method in
the current class. If you are on the last method implementation in the current class
and you press Ctrl-Alt-Down arrow, your cursor does not move. While in class lock
mode, pressing Ctrl-Q"L again disables class lock. While module navigation doesn't
apply to C# and C++ code, method hopping does. Class lock, however, is currently
only available in the Delphi and C# editors.

SyncEdit
SyncEdit, introduced in Delphi 2005, provides support similar to symbol renaming
refactoring. Unlike symbol renaming, however, SyncEdit performs localized renaming
of symbols for a selected code block only. This is a powerful capability and one of the
most popular new features with developers. SyncEdit becomes available anytime you
select a code block that includes at least two instances of the same symbol name. For
example, consider the following figure, which depicts a selected code block that
includes more than one reference to a local variable named DataTable1 (as well as
DataSet1, DataAdapter1, Connection 1, and the Create method).

 Borland Developer Studio 2006 Reviewer's Guide

The SyncEdit icon appears in the left gutter of the editor window, indicating that
synchronized changes to the selected code block are available. To enter the SyncEdit
mode, you either click this icon or press Shift-Ctrl-J. Once you enter the SyncEdit
mode, the duplicate symbols are identified, and the symbol selected for synchronized
editing appears highlighted (with the duplicates being displayed enclosed in boxes). If
you want to edit a symbol other than the one selected by default, press the Tab key
until the symbol you want to SyncEdit is selected.

After selecting the symbol to edit, begin typing. The name of the selected symbol, and
its duplicates, are updated as you type. The following figure shows the name of the
DataTable being changed to CustTable. (The edit is being performed on the first
instance of DataTable1, which appeared in the var declaration of this method.)

SyncEdit is a great productivity tool when you are writing functions, procedures, and
methods, in that this feature is so easy to use. There are, however, important
differences between SyncEdit and symbol renaming refactorings. SyncEdit is lexical,
so it works with comment lines as well as compilable code, unlike symbol renaming
refactorings, which work only on actual symbol references. Likewise, symbol renaming
refactoring extends its reach into descendant classes, as well as to resource files
(such as VCL and VCL for .NET form files). SyncEdit only applies to the currently
selected code block.

 Borland Developer Studio 2006 Reviewer's Guide

Refactoring
Refactorings were introduced in Delphi 2005, and Borland Developer Studio 2006
introduces a number of important new refactorings. Refactoring is the process of
updating existing code to improve its readability, maintainability, and efficiency,
without changing the essential behavior of the software. Common refactorings include
providing more expressive names for variables, replacing duplicate code segments
with a call to a common function that performs the same task, and replacing literal
values with constants or resource references. Delphi 2006 includes a number of
impressive refactorings. These include symbol renaming, method extraction, variable
and field declarations, and resource refactorings.

Symbol Renaming
Symbol renaming allows you to change all instances of a symbol's name throughout
your project. Unlike a search-and-replace feature, symbol renaming respects the
context in which the symbol name appears. Symbols that can be renamed using this
refactoring include class and interface names, properties, methods, functions and
procedures, as well as variables and constants.

To perform a symbol renaming refactoring, select the symbol whose name you want
to change in the code editor, and select Refactoring | Rename. Use the Rename
dialog box to define a new name for your symbol.

If you leave the View references before refactoring option checked, Delphi 2006
displays the Refactorings pane, which lists all of the instances within your code where
the change will be applied.

Click the Refactor button on the Refactoring pane toolbar to apply the changes.

 Borland Developer Studio 2006 Reviewer's Guide

Alternatively, you can choose to remove one or more of the refactorings before
applying them, or even cancel the refactoring altogether.

Variable and Field Declarations
The Declare Variable and Declare Field options on the Refactor menu permit you to
quickly create a local variable or member field declaration. This option is available with
Delphi code, but not with C# projects. (This feature is not needed in C# since fields
can appear almost anywhere within a C# class. By comparison, in Delphi, variables
must appear in a var block, and member fields must appear in a type block.)
To insert a local variable or member field, select the symbol name that you created in
the code editor, and select Refactor | Declare Variable or Refactor | Declare Field (or
press Ctrl-Shift-V or Ctrl-Shift-D, respectively). If you select Declare Variable, the
Declare Variable dialog box is shown.

You use the Declare Variable dialog box to change the variable name, set its data
type, make the variable an array type with a specific dimension, or to initialize the
newly created variable to a specific value. Click OK to create the local variable, and
initialize its value (if you chose that option).If you select Declare Field, the Declare
New Field dialog box is displayed. You use this dialog box to set the name and data
type of the new field, to declare it as an array of a given dimension, and to define its
visibility within the associated class. When you click OK, the newly named field is
created in the selected section of the class within whose method the symbol is
located.

 Borland Developer Studio 2006 Reviewer's Guide

Resource Refactoring
Resource refactorings are used in Delphi code to convert string literals into
resourcestring block entries, replacing the original literal with the resource string
symbol. (There is no resourcestring block in the C# language.) Using resource strings
instead of string literals is particularly valuable when a specific string literal is used
repeatedly, as well as when you need to create localized (language and/or culture
specific) versions of your application. After placing your cursor within a string literal in
the Delphi code editor, select Refactor I Extract Resource String. Use the Extract
Resource String dialog box to modify the string and to change the default name for the
resource symbol. When you click OK, the string literal is replaced with the resource
symbol, and the named symbol is inserted into a resourcestring block in the
associated unit's interface section.

Extract Method Refactoring
Most developers think of method extraction when they think of refactoring. Method
extraction involves converting one or more lines of code into an independent method
call, replacing those lines with an invocation of the extracted method. In Delphi 2006,
method extraction refactoring is only available for the Delphi language. Method
extraction is particularly useful when the same or similar lines of code appear
repeatedly in your project. By extracting those lines to a separate method, replacing
each of the repeated instances with an invocation of the method, you greatly enhance
your code's maintainability by creating a single location where changes to those lines
of code, if desired, need to be implemented. To perform a method extraction
refactoring, select the lines of code that you want to extract to a method, and then
select Refactor | Extract Method. Use the Extract Method dialog box to define a name
for the new method, as well as to examine the code that will be placed inside of this
new method.

 Borland Developer Studio 2006 Reviewer's Guide

Delphi 2006's extract method refactoring is intelligent, with respect to variables,
properties, and objects referenced within the code being extracted. For example,
since the code in the preceding figure includes a reference to the Disposing property
of the method's class, the value of this property is passed by value to the refactored
code. By comparison, if the code actually made a change to the value of a variable
that needs to be passed into the refactored method, the associated parameter would
be passed by reference (using the var keyword).

Import Namespace (C#) and Find Unit (Delphi)
Although not exactly a refactoring, the Import Namespace and Find Unit options under
the Refactor menu permit you to quickly locate and import the namespace associated
with a particular symbol. If you are coding in C#, you select Refactor | Import
Namespace. Delphi developers select Refactor | Find Unit. After selecting this option
from the Refactor menu, the displayed dialog box lists all of the classes in all of the
namespaces available to the environment you are working in. For example, if you are
creating a Delphi .NET Windows Forms application, the namespaces of the FCL and
RTL for .NET (the .NET version of the Delphi runtime library) are available. Delphi
VCL for .NET developers will find the VCL for .NET namespaces as well.

By comparison, if you are creating a Delphi Win32 application, the various units of the

 Borland Developer Studio 2006 Reviewer's Guide

VCL and RTL are listed. Type the name of the class that you want to be able to
access in the Search field. As you type, the Matching Results list is filtered to include
only those classes, and their associated namespaces, whose names match what
you've typed so far.

Select the name of the class whose namespace you want and click OK. If you are
working in Delphi, you can also specify whether the namespace will be added to your
interface or implementation section uses clause.

Change parameter refactoring
For the Delphi personality, the change parameter refactoring permits you to quickly
modify a method declaration and its implementation block. This feature allows you to
quickly add and remove parameters, as well as change the default values of existing
parameters. To use this feature, select a method, function, or procedure in the editor
(either its declaration in your class or its implementation) and select Refactor I Change
Params. Use the Change Parameters dialog box, shown in the following figure, to
make the changes you want.

 Borland Developer Studio 2006 Reviewer's Guide

In addition, a large number of pattern-related refactorings have been introduced in
both the C# and Delphi personalities. These refactorings include move, extract
interface, extract superclass, pull members up, push members down, safe delete,
inline variable, introduce field, and introduce variable. In order to use these
refactorings, you must enable modeling support in your corresponding C# or Delphi
project. Finally, the powerful rename refactoring has been introduced in the C++
personality.

Error Insight
Error Insight, which makes its debut in Delphi 2006, provides you with a service that
can be roughly described as spell checking and grammar checking for programmers.
As you write your Delphi or C# code, the IDE actively evaluates your work, identifying
the symbols, keywords, and directives that you use, looking for syntax and semantic
errors that the compiler cannot resolve. When Error Insight locates an error, it
identifies the problem by underscoring the offending text with red squiggly lines,
similar to how Microsoft Word identifies words not in its dictionary.

 Borland Developer Studio 2006 Reviewer's Guide

When you pause your mouse pointer briefly over a symbol that Error Insight does not
recognize, Error Insight displays a hint window with information about the identified
error. In addition to the Error Insight features available in the code editor, the problems
located by Error Insight also dynamically appear in the Structure pane, under the
Errors node, and disappear as they are corrected. The following figure shows the
Structure pane with a number of identified errors.

In the example shown in the preceding figures, adding the Borland.Vcl.Registry unit
(for the TRegistry class) and Borland.Vcl.Windows (for the HKEY_LOCAL_MACHINE
constant) to this unit's uses clause allows Error Insight to see the various symbols that
it identified as problems. Once these two units are added to the uses clause, both the
Structure pane and the code editor are updated, indicating that no problems are
detected in this code. You can configure Error Insight from the Code Insight node of
the Options dialog box. Display this dialog box by selecting Tools | Options from the
main menu.

Help Insight
Another new Code Insight feature appearing in Delphi 2006 is Help Insight. Help

 Borland Developer Studio 2006 Reviewer's Guide

Insight provides you with information about the classes, interfaces, methods,
properties, and fields that appear in your code, without you ever having to leave the
code editor. To access Help Insight, briefly pause your mouse pointer over a symbol
in the code editor. After a moment, a hint window appears, displaying information
about the symbol.

In many instances, Help Insight includes one or more links within the hint window.
Clicking one of these links may drill down into the help, displaying an additional hint
window with information about the link you clicked. Alternatively, clicking a link may
take you to the line of code where the clicked symbol is defined. Help Insight is also
available from the windows displayed by Code Insight, including the Class Completion
and Argument Value List windows. When a Code Insight window is active, select an
item in the Code Insight window to show the Help Insight for that item. For example, in
the following figure Help Insight is displaying information about the BeginTransaction
method of a SqlConnection object. This help became available after BeginTransaction
was selected in the Code Completion window.

You can configure Help Insight from the Code Insight node of the Options dialog box.

Improved Page Management
Two improvements to editor page management have been introduced in Borland
Developer Studio 2006. The first is that you can now configure whether units opened
during debugging remain open, or not, once you exit the debugger. Specifically, when
you step into a unit that is not already opened in the code editor, that unit is opened
automatically. Previously, that unit would have remained opened after you exited the
debugger. You can now control this behavior by enabling or disabling the
Automatically close files implicitly opened while debugging, check box on the

 Borland Developer Studio 2006 Reviewer's Guide

Debugger Options page of the Options dialog box, shown in the following figure.

The second code page management upgrade can be found on the code page
right-click menu. This menu now includes an option to close all opened pages, with
the exception of the code page you right-click, as shown in the following figure.

Together, these improvements to code page management save you time and reduce
clutter in your editor.

The History Manager
One of the more exciting additions to the Delphi 2006 code editor is the History
Manager. The History Manager, which you display by clicking the History tab when a
source file is active in the code editor, allows you to view changes to your source files
over time, view comments about specific versions of your source code, view the
differences between the various saved versions of your files, and easily revert to any
backup state or checkin.

 Borland Developer Studio 2006 Reviewer's Guide

By default, the History Manager transparently maintains local copies of your source
files in a folder named __history under your project directory each time you save your
changes. This feature is called local file backup, and you use the Options dialog box
to configure how many versions of your local backup to keep. Delphi 2006 maintains
the last 10 saved versions of each source file, by default. Depending on your available
hard disk space, you may want to increase the number of backups. If you are using
Borland’s StarTeam version control server, the History Manager maintains StarTeam
checkins as well. Using this feature, you can not only view changes that you have
made to the source files, but also compare your changes with those implemented by
other developers working on the StarTeam-managed project. StarTeam also permits
you to track changes even after you have changed a file's name. In short, the History
Manager provides you with a convenient and powerful interface to the robust
StarTeam project asset management system.

It's worth noting that the History Manager also works with the DFM files of VCL and
VCL for .NET applications. DFM files are used in those applications to persist
information about the properties of the objects that appear on your forms, data
modules, and frames. As a result, the History Manager permits you to view, manage,
and restore changes made to your form designs using the same tools as those used
on Delphi code files. There are three panes available within the History Manager.
These panes are named Content, Info, and Diff. Each of these panes is described in
the following sections.

The Content Pane
You use the Content pane to review the contents of your saved source files, and
optionally revert to a previously saved version. When you select a specific backup or
the current saved version of the file, the contents of that file are displayed in the code
area. In addition, the file name and the date last saved appear in the History
Manager's status bar.

 Borland Developer Studio 2006 Reviewer's Guide

Use the code area to view the contents of the selected file. If you want, you can use
the code area to select and copy (Ctrl-C) lines of code that you want to paste
elsewhere within your project (or even into other projects).
If you want to revert your code to one of the previous saved versions, select the saved
backup that you want to revert to and click the Revert to previous version button in the
History Manager toolbar.

The Info Pane
You use the Info pane to view comments and notes associated with a particular
version of your source file. If you are using StarTeam to manage your History
Manager contents, these comments are linked to your StarTeam backups. If you are
using local backups, these comments are generated by Delphi 2006 and cannot be
modified. Some operations, such as refactorings, write information into the Info pane
of the History Manager.

 Borland Developer Studio 2006 Reviewer's Guide

The Diff Pane
For most developers, the Diff pane offers the most valuable feature of the History
Manger. The Diff pane provides insight into the differences between the multiple
versions of your source code, including comparisons between the current edit buffer
and saved source files. Select one of the saved versions of your source file from the
Differences From: list on the left side of the Diff pane, and either the contents of the
current edit buffer or one of the other saved versions from the To: list on the right side.
The difference view is displayed in the code area, with the newer code versions
identified with a plus sign (+) in the left gutter, and the older versions identified with a
minus (-) sign. The following figure depicts changes between the current version of the
file in the edit buffer and one of the saved local backups.

 Borland Developer Studio 2006 Reviewer's Guide

Updated Memory Manager
There is one major enhancement in particular that affects every aspect of the IDE, as
well as any Win32 applications you compile using Borland Developer Studio 2006, but
this enhancement is not visual in nature. Borland Developer Studio received a
significant upgrade in the form of a new memory manager. Based on FastMM, the
new memory manager optimizes memory utilization while providing significantly better
performance. Importantly, this same memory manager is included in any Win32®
applications that you compile with Borland Developer Studio 2006. In other words,
without making any other changes to your code, simply re-compiling your existing
Win32 Delphi or C++ applications in Borland Developer Studio 2006 should improve
the performance of those applications. While the new memory manager has no affect
on compiled .NET code (that is the responsibility of the .NET just-in-time compiler), it
does provide significant performance improvements in the Borland Developer Studio
2006 IDE, even when you are working with .NET applications.

Debugger Enhancements
No comprehensive development environment would be complete without a
world-class debugger, and Borland Developer Studio 2006 has two of them. One
debugger is for Win32 debugging and the other is for .NET. As in all other areas of
Borland Developer Studio 2006, Borland has introduced a number of performance and
feature enhancements to these debuggers. Some of these updates are relatively
minor, providing you with added convenience. For example, individual breakpoints can
now be easily enabled or disabled by simply Ctrl-clicking the breakpoint in question in
the editor gutter. Likewise, as mentioned earlier in this guide, code files that are
implicitly opened during debugging can be configured to automatically close when
execution terminates. Another enhancement is that you can now copy content from

 Borland Developer Studio 2006 Reviewer's Guide

the CPU window to the Windows clipboard. In addition, there are also some major
enhancements and updates to Borland Developer Studio 2006's debuggers. These
are described in the following sections.

Remote Debugging
More so than ever, the applications you build today are likely to execute in a
distributed environment, an environment that introduces significant challenges if you
need to debug a remote process. Fortunately, Borland Developer Studio 2006 marks
the return of one of Delphi's more powerful debugging features – remote debugging.
With the remote debug server, you can use your development machine to step into
code that is running on another computer on your network or the Internet. With remote
debugging, you can see first hand how your program is actually running on the server
to which it is deployed.

Expandable Watches and Local Variables
When debugging, the properties and fields of symbols that appear in the Watch List
and Local Variable panes are now expandable. This feature greatly reduces desktop
clutter while you are debugging. Examples of expandable symbols are shown in the
following figure. Here the Local Variables pane is used to inspect Self, which in this
case is the main form of this project. Notice that each of the form's properties and
fields can be expanded, which in turn can be further expanded. You had to open
multiple inspector windows in previous versions of Delphi to obtain this same
information.

Tooltip windows are also now expandable. Specifically, when you pause your cursor
over a symbol while the debugger is engaged, and the symbol can be drilled into, the
displayed tooltip includes a plus sign ("+") that you can click to expand the help. The
following figure shows a portion of an expanded tooltip displayed by the debugger.

 Borland Developer Studio 2006 Reviewer's Guide

Grouped Watches
Watches can now be grouped, permitting you to better organize and control the
symbols whose values interest you. You assign a particular watch to a group when
you define the watch. As you can see from the Watch Properties dialog box shown in
the following figure, you can select the name of the group to which the watch belongs
when you define it.

Each group is represented by a separate tab in the Watch List pane. To view the
symbols for a particular group, select the tab for that group. The Watch List pane in
the following figure contains two groups, Watches and locals. In this figure, the locals
tab is currently selected.

 Borland Developer Studio 2006 Reviewer's Guide

To further support groups, the Watch List context menu has been updated to permit
you to add, delete, and manage your Watch List groups. This menu is shown in the
following figure.

Symbol Table Management
Borland Developer Studio 2006 now permits you to control the order in which symbol
tables are loaded for the module you are debugging. You can also choose to restrict
the debugger's search to particular symbol tables, a technique that can improve your
debugging performance. To configure symbol table usage, use the Symbol Tables
node of the Project Options dialog box, as shown in the following figure. You can also
access this feature from the Run Parameters dialog box, which you display by
selecting Run | Parameters from the Borland Developer Studio main menu.

 Borland Developer Studio 2006 Reviewer 's Guide

Database
Delphi's exceptional database support has always set it apart from other development
environments ⎯ this legacy continues with Borland Developer Studio 2006. And
although Borland Developer Studio 2006 has far more database support than any
other single product, Borland has managed to squeeze even more database features
into this release. These are described in the following sections.

Support for dbExpress™ in the Data Explorer
The Data Explorer, shown in the following figure, now includes support for
dbExpressTM databases. Features accessible from the Data Explorer for
dbExpress-supported databases include SQL testing and execution, stored procedure
execution with parameter definition, data viewing, and drag-and-drop placement of
components in the designer. These features apply to both for VCL and VCL for .NET
applications.

 Borland Developer Studio 2006 Reviewer 's Guide

Borland Database Drivers
The following table contains a complete list of the databases that are directly
supported by custom Borland drivers through BDP for ADO.NET and dbExpress. Note,
however, that Borland Developer Studio also provides access to virtually every
available database through its support for the Borland Database Engine, Ole Db
Providers, ODBC drivers, ADO.NET data providers, as well as third-party database
components.

BDP for ADO.NET dbExpress

Borland® InterBase® V 7.5 and
7.5.1

Borland InterBase V 7.5 and 7.5.1

Oracle® 10g Oracle®10g

IBM® DB2® 8.x IBM DB2 8.x

MS SQL Server TM 2000 and
2006 and MSDE ® 2000

MS SQL Server 2000 and 2005

 Borland Developer Studio 2006 Reviewer 's Guide

Sybase® 12.6 Sybase 12.6

MySQL® 4.0.24 MySQL 4.0.24

 Informix® 9

 SQL Anywhere® 9

Other Updates to dbExpress
In addition to Data Explorer support for dbExpress, dbExpress has received several
additional upgrades in Borland Developer Studio 2006. For instance, the TSqlQuery
and TSqlDataSet components now support both IN and OUT parameters. In addition,
dbExpress for .NET now includes full Unicode® support.

 Borland Developer Studio 2006 Reviewer's Guide

Summary
At the beginning of this reviewer's guide you learned that Borland Developer Studio
2006 is the ultimate development tool, providing you with a peerless combination of
development and support tools in a tightly integrated product.

Without question, Delphi 2006, C++Builder 2006, and C#Builder 2006 are the best
and most flexible tools available for building applications for the Win32 and .NET
platforms. But the benefits of having these developer tools tightly integrated with
world-class application lifecycle management tools simply cannot be stressed enough.
The seamless integration you find in Borland Developer Studio 2006 helps foster
better communication between you and the other major stakeholders of your project
and development teams. By enabling better communication, you can design and
develop faster and better, and significantly reduce missteps. The Together integration
allows you to provide advanced models of your systems before and during the
development process, and the code audits and metrics ensure that what you are
developing is of the highest standards and is easier to maintain.

The StarTeam integration gives you much more than the standard check-in and
check-out process that you normally associate with a source code version control
system. It permits you to submit change requests and generate automatic notifications
of underlying changes directly to your team. In addition, the type of license you get
with Borland Developer Studio 2006 means that you and your team are ready to work
together. It also allows you to upgrade at a significant savings to more advanced
versions that support bug tracking, newsgroups, and customized workflow capabilities.
Having up-to-date requirements is key to your producing quality results on time. A
recent report found that 71% of all projects that failed did so in part due to poorly
defined requirements. The integration found in Borland Developer Studio 2006
increases your team's communication throughout the entire lifecycle of your project.
Not only will this ensure that your projects run smoother, but it also allows you to
implement projects that are in concert with your organization's needs.

About Borland Software Corporation
Founded in 1983, Borland Software Corporation (NASDAQ: BORL) is the global
leader in platform independent solutions for software delivery optimization. The
company provides the software and services that align the teams, technology and
processes required to maximize the business value of software. To learn more about
delivering quality software, on time and within budget, visit: http://www.borland.com.

About the Author
Cary Jensen is President of Jensen Data Systems, Inc., a software development,
training, and consulting company (http://www.jensendatasystems.com). He is an
award-winning, bestselling author of nineteen books, a frequent columnist on the
Borland Developer Network (http://bdn.borland.com), and a popular speaker at
conferences, workshops, and training seminars around the world. Cary has a Ph.D. in
Human Factors Psychology, specializing in human-computer interaction, from Rice
University in Houston, Texas. You can contact Cary at
cjensen@jensendatasystems.com.

http://www.borland.com
http://www.jensendatasystems.com
http://bdn.borland.com
mailto:cjensen@jensendatasystems.com

 Borland Developer Studio 2006 Reviewer's Guide

Acknowledgements
Many people at Borland contributed their valuable time to comment on and contribute
to this reviewer's guide. In particular, the author wishes to thank Rob Cheng, Michael
Swindell, Michael Rozlog, Malcolm Groves, Henrik Jondell, Bruneau Babet, Allen
Bauer, Adam Markowitz, Darren Kosinski, Chris Benson, Ramesh Theivendran, David
Intersimone, John Kaster, and last, but not least, Jason Vokes, for their comments
and input.

Made in Borland® Copyright © 2006 Jensen Data Systems, Inc. All rights reserved. All
Borland brand and product names are trademarks or registered trademarks of Borland
Software Corporation in the United States and other countries. Microsoft, Windows,
and other Microsoft product names are trademarks or registered trademarks of
Microsoft Corporation in the U.S. and other countries. All other marks are the property
of their respective owners. 24176

